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Results obtained within Ciach-Høye-Stell model of oil-water-surfactant mixtures in re-

stricted geometry are reviewed. Special attention is paid to ordering effects of a surface

(or two parallel surfaces) close to phase boundaries between lamellar and microemulsion

or water-rich phases. Relations between the structure of the confined self-assembling

system and the measurable quantities are discussed. Predictions of the Ciach-Høye-Stell

model are compared with Landau-Ginzburg and membrane theories and with experi-

mental results.
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1. INTRODUCTION

Surfactant particles can self-assemble into monolayers, when a small amount of

them is added to oil-water mixtures. By self-assembly at the oil-water interfaces they

prevent unfavorable contacts between the polar and nonpolar components, because

one end of surfactant particles is hydrophilic and the other one is hydrophobic. Simi-

lar self-assembly into bilayers exhibit surfactant and lipid particles in water or copol-

ymers. Typical size of oil- or water-rich domains, separated by the surfactant

monolayer, is 100–1000 Å, whereas the thickness of the monolayer is ~20 Å. One,

thus, often models the layers by mathematical surfaces. The oil- or water-rich do-

mains may be closed as in micelles or inverse micelles of various shapes, or not, as for

example in multiply connected networks of channels. The domains (and the sur-

factant surfaces separating them) may form ordered structures, periodic in one, two

or three dimensions. As in ordinary crystals, certain elementary cell is infinitely re-

peated in such ordered phases. The simplest and the most common is a lamellar phase,

in which flat oil- and water-rich layers are separated by surfactant sheets. To the most

complex structures belong bicontinuous cubic phases [1–4], in which the surfactant

is self-assembled into periodic minimal surfaces [5]. When the thermodynamic con-

ditions are suitably changed, the ordered phases can melt. The correlation functions

for water (or oil) densities of the resulting microemulsion exhibit damped oscilla-

tions. The period of these oscillations is related to the size of the domains of the or-

dered phases. Hence, on the length scale ~100 Å, the disordered microemulsion

resembles locally ordered phases. Simple liquids locally resemble solids in a similar

way – the correlation function exhibits damped oscillations with the decay length,
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comparable to the period of the structure. When the thermodynamic conditions are

changed further (surfactant concentration decreases and/or temperature increases), a

disorder line [6–8] is reached. Beyond the disorder line, the correlations of densities

decay monotonically on the nanometer length scale. Similar disorder line, but on a

molecular length scale, was found in simple liquids [6]. The above observations sug-

gest, that the oil- and water-rich domains play on the nanometer length scale a role

analogous to particles in simple fluids on the molecular length scale. However, in var-

ious situations the domains behave significantly differently than the particles, espe-

cially when the system is under external stress. The domains are compressible and

flexible rather than rigid and may change the shape and volume.

2. THEORETICAL APPROACHES

2.1. Membrane Approach: Sufficiently far from the disorder line, when almost

all surfactant particles self-assemble into well-defined monolayers, one can develop

a statistical-mechanical description, in which the monolayers, rather than particles,

play a role of objects. A single monolayer is treated as a nearly incompressible, flexi-

ble, elastic membrane. A probability distribution of states of membranes is given by

the Boltzmann factor ~e–�F (� = 1/kbT, T is the temperature and kb is the Boltzmann

constant), where the free energy F is determined by elastic properties of individual

membranes and of the whole stack. Due to incompressibility, in-plane deformations

of membranes are often neglected. Out of plane deformations change the curvature of

the membrane. There are two geometrical invariants of the curvature tensor – the

mean, (c1 + c2)/2, and the Gaussian, c1c2, curvatures, where ci = 1/Ri and R1,R2 are

principal radii of curvature. The elastic energy of a membrane is approximated by

[9–11]
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where the integral is taken over the area of the membrane, c0 is the spontaneous curva-

ture related to asymmetry of surfactant particles, �, � and � are the surface tension,

the bending rigidity and the saddle-splay modulus, respectively, and �+ = � + �/2, �– =

–�/2. For incompressible membranes � = 0. The shapes and fluctuation spectra of a

single membrane are determined by (1).

Undulations of membranes change their effective rigidity – energy cost of bend-

ing is different in the presence of ripples – and the elastic properties depend on the

length scale. Scale-dependent effective bending rigidity reads [12]
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where a is a molecular length and � = O(1) is a constant (in [13] � = 3). Similar rela-

tions hold for ��. The length ��, for which the effective rigidity (2) vanishes, is called

the persistence length and reads �� = a exp(4��/�kbT) [13]. The persistence length

corresponds to the distance up, to which the membrane conserves its orientation (re-

mains flat), i.e. to the correlation length for vectors normal to the membrane.

Two nearly flat membranes interact with each other at short distances [14]. Also,

the presence of a fluid, confined between them, leads to an additional force, related to

excess pressure over the value fixed by the bulk reservoir and called solvation force or

disjoining pressure. Thermally excited undulations of membranes (if � � 1 – 10kbT)

also contribute to the free energy of a pair of membranes and lead to effective steric

repulsions between them [15]. Due to the Gauss-Bonnet theorem, dSc c E1 2 2�� �� , the

Gaussian-curvature term has no effect, when the topology of the surface does not

change. This is because the Euler characteristic �E is topological invariant. If � is ig-

nored, the free energy functional of a pair of nearly flat membranes can be approxi-

mated by the effective Gaussian functional [16]
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where� is a local deviation of a distance between the membranes from the average, P

= �(��r)
–1/2���. In the above�|| is a correlation length in a direction parallel to the mem-

branes and � = O(1) is a constant. P is proportional to the standard deviation of the

membrane position from the average – the separation of membranes is driven by their

fluctuations [17]. Terms of higher order in � can be neglected, since their only effect is

to renormalize � into �r [16,18].

A whole stack of nearly flat membranes, in which the free-energy of the near-

est-neighbors is given by (3), can be described in a continuous approximation by the

free-energy F = dr� ewith the free-energy density e, proposed earlier for smectic liq-

uid crystals [19],
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u(x, y, z) is a locally varying displacement and describes small deformations of the

ideal order and B is the compressibility modulus. By comparing (3) and (4) one can

relate B to �r. The relation reads
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� denotes the thickness of the monolayer. In the pioneering work of Helfrich [15] �4 =

9�2/64.

When the distance between the membranes grows and becomes comparable to

the persistence length ��, no direction is distinguished and the stack of membranes

becomes isotropic as in a random bicontinuous phase. However, the experiments

show that the melting of the lamellar phase takes place for significantly smaller dis-

tances between the membranes [20,21]. Also, recent measurements [22] show that

the experimental points for B lie in a region between the theoretical curves (5), corre-

sponding to two significantly different values of �r.

Recall that in the above description the effect of � is ignored. However, topologi-

cal fluctuations in a form of passages between neighboring membranes (cylinders

connecting “holes” in the two membranes) or in a form of droplets were observed ex-

perimentally [20,21,23,24] and in Monte Carlo (MC) simulations [25–27]. Their ef-

fect is particularly significant for the melting of the lamellar phase [12,25]. From the

second equality in (1) with � = 0 and c0 = 0 one sees that for �– < 0 (� > 0) the lamellar

phase is unstable with respect to formation of minimal surfaces (with c1 = –c2) or for

�+ < 0 with respect to formation of droplets (with c1 = c2) [12]. Melting of the lamellar

phase is given by �–(�) = 0 [11,28], where the scale-dependent �–(�) is given by an

equation analogous to (2). The distance between the layers at this instability is com-

parable to � � = a exp(4��/� � kbT). The passages certainly change the elastic proper-

ties of the stack of membranes. The dependence of the elastic constant B on the

saddle-splay modulus � has not been determined yet.

2.2. Landau-Ginzburg Approach: The membrane approach is particularly suit-

able for studying elastic properties of amphiphilic systems. Unfortunately, it is very

difficult in the case of bicontinuous structures and in the presence of topological fluc-

tuations. Microemulsions can be more conveniently described within a framework of

Landau-Ginzburg theories, in which the state of the system is determined by local

concentrations of oil, water, and amphiphiles, �o(r), �w(r), �amp(r,�), respectively.

The fields �i are defined on a mesoscopic length scale. Since one end of the

amphiphile attracts oil and the other one attracts water, the interactions with amphi-

philes depend on their orientations �. In more sophisticated descriptions orien-

tational degrees of freedom of polar water particles are also taken into account [29].

Statistical distribution of the states is described by a free-energy functional F [�o, �w,

�amp].

In principle, by integrating out the surfactant degrees of freedom, one can obtain a

functional depending on a single order-parameter (OP), � = �o – �w. In practice one

assumes that a good approximate form of a functional of � can be obtained on a

phenomenological level. The functional is constructed in such a way that one re-

quires agreement between predicted and experimental results for phase equilibria and

structures of the uniform phases. One assumes [30]

F[�] = dr� � � � � �( ( ) ( )( ) ( ) )c g f2 2 2� � � � �� (6)
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The function f(�) must have three minima for � = �b, where �b = �o, �w, �m, so that the

three-phase coexistence between oil (� = �o), water (� = �w) and microemulsion (� =

�m) can take place. Typically one assumes that in balanced microemulsions (with c0 =

0) �m = 0. The structure factor of uniform phases (Teubner-Strey (TS) form) is

S(q)�
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with f %% calculated at �b and g = g(�b), �b = �o, �w or �m. S(q) describes structureless oil-

and water-rich phases if g(�o/w) > 0. If g < 0, S(q) assumes maximum for q & 0, as in

microemulsions. It is, thus, assumed that g(�m) < 0.

In microemulsion the correlation function, G(r) = '�(0)�(r)( – '�(0)( '�(r)(, in the

real-space representation exhibits damped oscillations with a period ) and decay
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The TS form very well agrees with experiments [31,32]. [Actually, a still better

fit, particularly for large q, is obtained [33] when (7) is multiplied by (q2 + qp

2)–1. In

[34] qp is related to the persistence length.] The model (6) predicts stability of the

lamellar phase and metastability of numerous bicontinuous cubic phases [2,3,35].

Due to its simplicity, the model is very popular, for reviews see [8,36].

The LG model can be reduced to the membrane description if only a certain class

of fields �(r) is taken into account. Assume oil-water coexistence and the interface

between oil and water located at z = 0. The equilibrium OP, *(z), minimizes (6) with

appropriate boundary conditions (*(–+) = �o, *(+) = �w). If all the fluctuations �(r)

are neglected, except from capillary waves �(r) = *(z – u(x,y)), where u(x,y) de-

scribes deviations (small and smooth) of the interface positions from the average z =

0, then the functional (6) is reduced to (1) and the parameters �, � and � describing the

surface tension and elastic properties of the interface are expressed as functionals of

*(z) [8,25,37].

The level surfaces � = �m, at which �(r) assumes the value corresponding to the

bulk microemulsion, are often identified with surfactant monolayers. With this iden-

tification the correlations of the surfaces

Gfilm ~ ' | ��(r)|,��(r))|��(0)|,(�(0))( (9)

where , is the Dirac ,-function, are identified with the surfactant-surfactant correla-

tion function. Qualitative agreement with experiments for surfactant structure factor
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[21] was obtained in (MC) simulations [38]. Note that the surfactant-surfactant corre-

lations can be reduced to correlations of level surfaces only when the surfactant con-

centration does not fluctuate independently of �, and one can assume that the

surfactant degrees of freedom are reduced to oil-water interfaces. [In fact, when all

amphiphiles completely saturate oil-water interfaces, the same form of the free en-

ergy should result if the amphiphilic degrees of freedom are reduced to interfaces or

are integrated out]. The independent fluctuations of the surfactant concentration can

be taken into account in a form of a scalar OP, �, equal to a deviation of d�� �amp ( , )r�
from the average value. Phenomenological functional of � and � has been considered

in [39]. The structure factor for the surfactant, calculated to 1-loop order, agrees

semi-quantitatively with experimental results (for not too large q). In particular, q–1

and q–2 forms for q - 0 and for large q respectively were found.

In the semi-infinite system the bulk free-energy (6) must be supplemented with

the surface term and in slits by two surface terms for two confining surfaces. The sur-

face term describes interactions between the surface and various components of the

mixture and the enhancement of the effective interactions in the boundary layer (in-

cluding missing neighbors). One assumes

Fs = d d

V

s s s

nw g�� � � �1 2
r

�

� � � �( ( ) ) (10)

Some authors choose n = 1 [40,41], others [25,42] assume n = 2.

When the surfactant volume fraction is comparable to volume fractions of oil and

water and in other cases in which the surfactant degrees of freedom cannot be reduced

to local oil-water interfaces, it is advantageous to consider a more general descrip-

tion, like the one presented below.

2.3. Quasi-Microscopic Approach; CHS Model: Self-assembling of surfactant

particles, added to a mixture of polar and nonpolar components, follows from their

amphiphilic nature – one end of the amphiphile is hydrophilic and the other one is hy-

drophobic. The same properties of interactions, crucial for self-assembly, are shared

by many substances. The generic models with simplified interactions, that capture the

features of the interactions which are common for the systems exhibiting self-

assembly, should correctly describe their universal properties [8]. One assumes that

the universal properties should be described by the generic models in which: (a) simi-

lar particles (or particle parts) attract each other and different particles (or particle

parts) repulse each other; (b) one end of the amphiphile attracts oil and the other one

attracts water. Different models, both in continuum [43–46] and on a lattice [47–56]

were introduced and studied. Here, we concentrate on the lattice model introduced by

Ciach, Høye and Stell (CHS) [48]. In general, M orientations of amphiphiles, uni-

formly distributed over a unit sphere, are considered. Every lattice site is occupied by

either oil-, water-, or an amphiphile in an orientation ��m , m = 1, ..., M, there are thus 2

+ M microscopic states �� i (x) at each lattice site x. �� i (x) = 1 (0) if the site x is (is not)

occupied by the state i, where i = 1,2, ..., 2 + M denotes water, oil and surfactant in dif-
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ferent orientations respectively. In the case of close-packing and oil-water symmetry,

only one chemical potential variable is relevant, namely � � �1 – �surf = �2 – �surf, with

�surf = �i for i > 2. The Hamiltonian in the presence of external fields hi(x) can be writ-

ten as:

H =
1

2
� ( ) ( � ( ' ) ( � (�

,

� � � � �i

i j

ij i ix x x x..
&

� � �
x x'

jU x x' ) h ) ( ) 1 2( � (x x) ))
xx

�... �
i

(11)

In the simplest version of the CHS model, a simple cubic lattice with the lattice con-

stant a / 1, identified with the length of the surfactant, is considered. Only near-

est-neighbors interact and the interaction energy between particles of species i, j at

the sites x, x% respectively, Uij(x – x%), vanishes for || x – x%|| & 1. In the simplest version

of the model, the interactions between amphiphiles are neglected. In the case of

oil-water symmetry, only two parameters characterize the interactions: b is the

strength of the water-water (oil-oil) interaction and c describes the interaction be-

tween water (oil) and an amphiphile. The interaction between amphiphiles and ordi-

nary molecules is proportional to a scalar product between the orientation of the

amphiphile and the distance between the particles, x – x%. Expressions for Uij(x – x%)
are given in [57,58] for various versions of the CHS model. Because the amphiphiles

do not interact with each other in the original CHS model, one can exactly integrate

their degrees of freedom and obtain an effective Hamiltonian depending only on a dif-

ference between oil and water densities. Such a procedure has been performed for the

orientations restricted to unit lattice vectors (M = 2d) in [59,60]. One should note that

the resulting effective Hamiltonian is much more complicated than the continuous

phenomenological form (6). In particular, up to 7 lattice-site interactions (central site

+ 2d nearest neighbors) have to be taken into account, whereas in a lattice analog of

(6) only up to three lattice site interactions are included.

The model is designed for description of the balanced systems, with c0 = 0. Un-

less the model is extended to account for asymmetry of interactions, the phase dia-

gram it predicts cannot agree with experimental ones. The discrepancies correspond

to stability regions of unbalanced systems (c0 & 0) in real substances. For balanced

systems, however, many phenomena can be correctly described, despite the fact that

some other parts of theoretical and experimental phase diagrams disagree. Exten-

sions of the CHS model are possible if nonsymmetric effective interactions are

suitably defined. The interactions between amphiphiles, supporting formations of mono-

layers, can be taken into account in still another generalization of the CHS model

[58]. In contrast to the phenomenological and LG approaches, once the interaction

parameters b and c are fixed in the CHS model, there are no other parameters, which

could be fitted to the experimental results. The only other parameters in this approach

are thermodynamic variables.

It is impossible to solve the CHS model exactly, except for one-dimensional sys-

tems [61]. In practice one can obtain approximate results within a mean-field (MF)
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theory or by MC simulations. Within the MF approximation the microscopic configu-

rations � ( )� i x occur with a probability proportional to the Boltzmann factor

exp � ��
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where �i(x) = Uij

jx'

.. (x – x%)�j(x%) is the mean field and �i(x) is the MF-average of

�� i (x), introduced here to compensate the double counting of pairs of sites. The grand

thermodynamic potential of the system, confined between two identical surfaces xd =

0 and xd = L + 1, perpendicular to the d-direction in MF takes the form:

0(1, �, L) = � 1 � � � , ,i

i

i i i i ih( ) ( )) ( ) ( ) ( )x x x x.. � � � ��
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x
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2
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Here, the first summation is taken only over the region 0 < xd < L + 1. 1 = 1/�b is the

dimensionless temperature, � = �/b, and 0 is also measured in units of b. The dis-

tance in (13) is measured in units of the lattice constant, a ~20 Å, comparable to the

size of amphiphiles.

The equilibrium bulk densities �i(x) correspond to the global minimum of the

thermodynamic potential 0 (13), with hi = 0 and L -+. There are many local minima

corresponding to various metastable phases with different periods. In practice one

can find local minima of 0 by solving a set of self-consistent equations for densities

[62]. The stable structure is identified with the one giving the lowest minimum. The

self-consistent equations for densities can be solved only numerically and only in fi-

nite systems. However, in infinite periodic structures 0 per lattice site, �b, is the same

as in a finite system with periodic boundary conditions, if the size of the finite system

is equal to the period of the infinite periodic structure.

Within MF stability regions of uniform oil-, water-, surfactant-rich (micro-

emulsion) as well as swollen lamellar and bicontinuous ordered phases have been de-

termined [58,62–64]. The transitions between microemulsion and coexisting oil- and

water-rich phases or the ordered periodic phases are continuous in the simple MF ap-

proximation above a tricritical point. However, these transitions turn to be first order,

if the surfactant degrees of freedom are integrated out and only then the MF approxi-

mation is applied [59].

Close to continuous transitions the period of the lamellar phase is determined by

the period of critical density fluctuations, which is a real number. Hence, in this re-

gion lamellar phases with periods incommensurate with the lattice are stable. The sta-

ble phase in this case can be found only approximately and the accuracy of the

approximation is limited by the size of the finite system with periodic boundary con-

ditions used for calculations. For example, if the period of the stable lamellar phase is
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12.5 or 13.5, the size of the finite system, which gives the correct �b, should be 25 or

27 respectively and it corresponds to 2 periods of the stable incommensurate phase.

By such a method periods which are rational numbers can be obtained. �b approaches

the value of the stable phase when the period of the metastable structure tends to the

equilibrium value. Although the model is defined on a lattice, the period of lamellar

phases it predicts can be varied continuously in a region of stability of swollen

lamellar phases [62,65].

Finding the effects of a single wall is more difficult. To infer the properties of

semiinfinite systems from the results, which can be obtained only for finite systems of

size L, one has to choose L sufficiently large, so that the finite size effects are irrele-

vant. In [66] the excess quantity

0ex (1, �, L) =
1

A
0 (1, �, L) – L�b(1, �) (14)

where A is the surface area of one wall, is calculated as a function of L for L commen-

surate with the period of the bulk phase. For sufficiently large L > Ls(1, �), 0ex as-

sumes a constant value, indicating that for L > Ls(1, �) the finite size effects are

negligible. The wall in this approach is described by geometrical constraints on the

size of the system and by an external field hi(x) = hi,(xd), where xd = 0 describes the

position of the confining surface. In a slit the structure can be determined directly by

finding the lowest value of 0 for various surface-field strengths.

The density of the surfactant averaged over all microscopic states with the proba-

bility (12) turns out to be a smooth function. In particular, in swollen lamellar phases

the density of surfactant has a nearly sinusoidal shape [62,66]. It indicates that the mi-

croscopic configurations with displaced surfactant monolayers occur with a high

probability. Indeed, because of the model interactions, the most probable micro-

scopic states in the CHS model correspond to surfactant monolayers separating oil-

from water-rich regions. If we neglect other low-probability states, then the model

becomes similar to a discrete version of the membrane model. States with displaced

monolayers play in this approach a role analogous to undulations in the membrane ap-

proach. The width of the oil-water interface is a measure of the displacements (or un-

dulations) of the surfactant layer. One can reduce the generic microscopic models to

the membrane models formally. First, one derives LG models from the microscopic

models by a suitable coarse-graining procedure [67]. Then, one can further reduce the

problem to the membrane approach by ignoring irrelevant degrees of freedom, in a

way described in the previous subsection.

An important feature of the CHS model is that no assumptions concerning the ge-

ometry and topology of the surfactant monolayers are necessary. The Boltzmann fac-

tor (12) automatically discriminates between the relevant and irrelevant states. In

contrast, in the membrane approach one always makes various assumptions about the

shapes and topology of the membranes to make any calculations possible. Because of
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that, the role of the passage formation in melting of the lamellar phase was overlooked

for about a decade.

3. RESTRICTED GEOMETRY

External conditions, such as a planar wall or a confinement, can strongly influ-

ence systems exhibiting self-assembly. The tendency for formation of various or-

dered periodic structures or even the self-assembly can be enhanced or suppresed,

depending on the chemical nature, shapes, the structure or the size of boundaries of

the system. In the self-assembling systems typical size of the structure ) and correla-

tion length � are mesoscopic, 2–3 orders of magnitude larger than in simple fluids.

The oil- or water-rich domains play on mesoscale a role analogous to particles of sim-

ple fluids on microscale. The ratio between the domain size ) and the diameter of a

particle, )/a, tells how further away from the surface the structure of the self-

assembling system is disturbed in comparison to simple fluids. In the amphiphilic

systems the effect of the wall extends to much larger distances (2–3 orders of magni-

tude) and the finite-size effects are relevant for systems, whose sizes would be truly

macroscopic for simple fluids.

Effects of boundaries are particularly strong close to phase transitions. In simple

fluids wetting phenomena accompanying discontinuous transitions [68–71] and the

critical adsorption near continuous transitions were extensively studied [70,72]. The

effect of the confinement on simple fluids has also drawn much attention. In particu-

lar, the capillary condensation and the corresponding critical point, the solvation

force and its connection with the structure of confined fluid were extensively studied

for slit-like pores [73–81]. Here, we describe ordering and disordering effects of a

single planar wall and of slit-like geometry on self-assembling systems. We pay par-

ticular attention to lamellar phases and lamellar-microemulsion or lamellar-water/oil

phase boundaries.

In the lamellar phases, the planes describing average positions of surfactant

monolayers are parallel to each other. In the swollen phases, the distance between the

monolayers is large, up to 1000 Å. The monolayers undulate and near a coexistence

with microemulsion numerous passages between the nearest monolayers are formed.

In microemulsions the monolayers strongly fluctuate and are interconnected, so that

the whole system is isotropic. Intuitively one can expect that a solid external wall or a

slit should induce parallel alignment of membranes. As we show later, this is not al-

ways the case.

3.1. Semi-Infinite Geometry. 3.1.1. Far from Phase Transitions. In the micro-

emulsion the GS model (6) with the surface term (10) predicts the exponentially de-

caying lamellar order [41]:

'�(z)( ~ exp(–z/�s)sin(2�z/)s + 2) (15)
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Here, the domain size )s and the decay length �s of the structure induced by the wall

are equal to the bulk parameters ) and �. 2 is needed to accommodate different surface

field strengths ws, �s, gs [41]. Similar results for the density profiles of the compo-

nents were obtained in the CHS model [66,82] in the case of hydrophilic walls.

A solid wall should suppress fluctuations of the membranes positions. Indeed, a

period of a swollen lamellar phase between hydrophilic walls a distance L > Ls apart

(see (14) and the discussion below) is smaller than in the bulk phase in the CHS model

[66].

3.1.2. Close to Phase Equilibria. Consider first an attractive wall in contact with

a gas phase. If the transition to liquid is approached, then a liquid-like layer is formed

near the surface. For temperatures higher than the wetting temperature (located at the

bulk phase-coexistence) the thickness of the liquid layer grows as

3 ~ –log|4�| (16)

where 4� is the distance from the gas-liquid coexistence. In a slit of width L the thick-

ness of the wetting layer grows when the coexistence with the liquid is approached

and becomes

3 ~ logL (17)

at the capillary condensation, when the liquid-like phase stabilizes in the whole slit.

If the wall is preferentially wet by the gas phase, drying of the wall takes place. The

above results hold for any order-disorder transition in uniform systems exposed to a

wall and follow from the LG functional of the form

F[5] = d d f( ) + ( f1� �
� +

� ��
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#
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z z
1

0

21

2
r|| ( ) ) ( )5 5 , 5 (18)

where 5 is a suitable OP for the corresponding order-disorder transition. The bulk be-

havior is governed by potential density f(5) and f1(5) describes the contributions due

to the surface:

f(5) = –h� +
a a

n

a

m
h

an n m m2 2

1
1 2

2 2
5 5 5 5 5 5� � � � �; ( )f1 (19)

Here, a2, an, am are positive and for systems which exhibit a bulk tricritical point (n, m)

= (4, 6). The coefficient a2 is temperature dependent, all the other coefficients are con-

stant for the gas-liquid coexistence. a1 is the surface enhancement and is related to the

ratio of the microscopic interactions in the bulk and in the surface, h1 is the difference

between the surface and bulk fields [83]. A crucial quantity for studying the wetting is
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3 = d
0

+

� � +z z( ( ) ))5 5� (20)

3 is called adsorption or coverage and is proportional to the thickness of the wetting

layer. In the context of the liquid-gas coexistence 3 describes the total amount of ad-

sorbed liquid.

It is very difficult to study semi-infinite systems within the membrane approach,

especially close to phase transitions. The LG approach is more suitable for this prob-

lem. However, any functional, which correctly describes the structure of micro-

emulsion, including the simplest form (6), must have a form essentially different

from F given by (18). The latter predicts only stability of homogeneous, structureless

phases. Since the LG functionals are essentially different from F given by (18), the

results obtained for simple fluids may not apply to systems, exhibiting self-assembly

on the nanometer length-scale.

Lamellar–water-/oil-rich phase coexistence. The wetting phenomena close to

transitions between water- (or oil-) rich and lamellar phases were studied in [42] in

the model defined in (6) and (10) in the MF approximation. A line separating the wet

from the non-wet region in the space (ws, gs) was found for �s = 0. In the balanced sys-

tems the concentrations of oil and water are equal in symmetric lamellar phases and

�(r) integrated over the period of the lamellar phase vanishes. In the oil- or water-rich

phases � & 0. Hence, for 5 identified with �, the adsorption 3 describes the wetting

layer of the lamellar phase. The dependence of 3 on the distance from the lamellar -

oil-rich phase transition, however, is not described in [42].

Lamellar-microemulsion phase coexistence. As already noted, in balanced

systems �(r) integrated over the period of the lamellar phase vanishes. Also, in bal-

anced microemulsion �m = 0. Therefore, the adsorption 3 defined in (20) vanishes or

is very close to zero for 5 / �, regardless of the thickness of the lamellar layer formed

between the wall and the microemulsion. The question arises, whether the general

features of the surface phenomena, such as given by (17) and (16) are the same in such

complex systems as in simple fluids, or are essentially different. Recall the analogy

between the complex system on the mesoscopic length scale and a simple fluid on the

atomic length scale, discussed in the Introduction. On the length scale of the size of at-

oms, the simple fluid exhibits the structure described by the pair-correlation function

and only on the larger length scale it is uniform. Similarly, on the length scale of ~ 100

Å the complex system exhibits the structure as described by density distributions and

on the length scales larger than the period of density oscillations, it is seen as a uni-

form fluid. In simple fluids the order parameter is the deviation of the local density

from the average value in a region of molecular size. By analogy, the order parameter

in a complex system should be identified with a suitable description of the deviations

of the density from the average value in a region of a linear size of the period of oscil-

lations. In s-component systems, exhibiting lamellar ordering, the density of each

component i of the mixture, �i(z) oscillates around the average value �i =

dz zi
z z

z

' ( ' )
'

�
)

�

�

� , where z is the direction and ) is the period of the density oscillations.
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In [66,82] the OP for one-dimensional structures (lamellar order) and for s-compo-

nent mixtures is defined as

5(z) = � �dz zi i

i

s

z z

z

' ( ' )
'

� �
)

�
�

�

�

.�
2

1

(21)

In a bulk lamellar phase, the shapes of �i(z) are the same in the whole sample and 5(z)

is a positive constant. By definition, 5(z) = 0 in the uniform phase. Near a continuous

transition the OP defined in (21) is proportional to the amplitude of density oscilla-

tions, which in turn behaves as |4�|1/2 in the MF approximation [62], where 4� is the

distance from the transition. Thus, at the continuous transition 5 vanishes within the

MF with the proper critical exponent. We have reduced the degrees of freedom, re-

lated to the density profiles, to just one number. This is analogous to reducing the

atomic degrees of freedom on the atomic length scale to the local density deviations

from the average value. Based on this analogy and following the general arguments of

Landau, it is postulated in [82] that in the semiinfinite geometry the functional of 5
should have the form given by (18) and (19), but with the length unit equal to the pe-

riod of the density oscillations, rather than to a molecular size. The hypothesis that all

degrees of freedom, except for 5 given by (21), are irrelevant for the general features

of the surface phenomena should be verified by explicit calculations in models,

which correctly predict the structure of microemulsion and lamellar phases. Unfortu-

nately, in the simplest LG model (6) the microemulsion-lamellar phase transition is

continuous in the MF approximation [8] and only MC simulations show that the tran-

sition is of first order [38]. It makes the problem difficult and the effect of the wall on

microemulsion-lamellar phase coexistence was not studied within the LG approach.

CHS model results. Fortunately, in the CHS model the microemulsion-lamellar

phase transition is first order below the tricritical point already in the MF approxima-

tion and the predictions of the functional (18) can be explicitly tested for 5 and 3 de-

fined as discrete versions of Eqs. (21) and (20) respectively. In the semiinfinite

system, two orientations of amphiphiles are distinguished: the head or the tail can be

oriented towards the wall and M = 2 is assumed in [66,82]. A hydrophilic surface is

modeled by the surface fields hi identical to interactions with water molecules, Ui1.

Also, the one-dimensional description can be applied as in standard wetting theories.

The density of surfactant, �surf(z) and 5, calculated near a hydrophilic wall in

microemulsion, close to the transition to the lamellar phase, are shown in Fig. 1. The

same quantities are shown in Fig. 2 near a neutral wall (hi = –1) in the lamellar phase,

close to the transition to the microemulsion. In the case of the hydrophilic wall, the

behavior of the adsorption for the lamellar OP 5 is shown in Fig. 3. Note the perfect

agreement with the predictions (16) and (17) for simple fluids.

The phenomenological parameters in (18) and (19) should be related to measur-

able quantities and to parameters specifying the material properties of the system. In

particular, these phenomenological parameters should be functions of �surf, 1 and the
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amphiphile strength c if the model (18) is applied for description of wetting in the

CHS model. In [66] it is shown that the functional (18) can be derived from the CHS

model by a suitable coarse-graining procedure and the explicit expressions for the

phenomenological parameters a2, an, am in terms of �surf, 1 and c/b are given there.

The ordering effects of a hydrophobic or a hydrophilic surface in microemulsions

and water-surfactant mixtures were studied by neutron reflectometry in [41,84,85]

and [86] respectively. When several water-rich layers, separated by surfactant (or

14 A. Ciach and M. Tasinkevych

Figure 2. The vicinity of the first-order transition from the lamellar phase to the microemulsion (1 = 2.8,

� = 4.3203, c/b = 4, |4�| = 0.0008) in the one-dimensional system. Walls are not preferential for

any state i, i.e. hi = –1 for i = 1,2,3,4. a: the density of the surfactant as a function of a distance

from the wall in units of the lattice constant. b: the lamellar OP 5 as a function of a distance

from the wall measured in units of the period of the lamellar structure equal to 4a.

Figure 1. The vicinity of the first-order transition from the microemulsion to the lamellar phase (1 = 2.8,

� = 4.3214, c/b = 4, |4�| = 0.0003) in the one-dimensional system. Walls are covered by a water.

a: the density of the surfactant as a function of the distance from the wall in units of the lattice

constant a. b: the lamellar OP 5 as a function of a distance from the wall measured in units of

the period of the lamellar structure equal to 4a. Dashed lines are to guide the eye.



surfactant-oil-surfactant) layers are formed near the surface, multiple scattering

takes place. Experimental reflectivity R(q) depends on the width of the layers and on

the water concentrations in them and is related to the near-surface structure in a com-

plicated way. The authors tried to fit their experimental data to the form (15). How-

ever, reflectivity R(q) calculated for the structure (15) is essentially lower than the

measured values. To fit the data, the authors had to use )s significantly smaller than )
and �s significantly larger than �. Moreover, the difference between the surface and

the bulk parameters increases when the coexistence with the lamellar phase is ap-

proached. Such behavior is consistent with the increase of the thickness of the

lamellar-like surface layer, predicted by the wetting theory described above.

3.2. Slit Geometry: In order to keep the confining walls at a given distance L, an

external force must be applied. For fluids confined between two parallel walls this

Self-assembling systems in restricted geometry 15

Figure 3. Excess lamellar OP, 3 defined in (20), calculated for one-dimensional system in the case of wa-

ter-covered walls, for 1 = 2.8, c/b = 4. a: as a function of log(4�), 4� is the difference between

� and its value at the bulk phase transition. b: as a function of log(L) at the transitions corre-

sponding to capillary condensations. L is the distance between the walls measured in units of

lattice constant a. Dashed lines are linear fits.



force, per unit area of the confining wall, is called solvation force or disjoining pres-

sure [87], f, and can be expressed as an excess pressure over the bulk value p [76]:

f = –
1

A L
p

T A

�
� �

0�

 
!

"

#
$ �

, ,

(22)

0 is the grand thermodynamic potential and A is the surface area of one wall (A >>

L2). For simple fluids the solvation force measured in surface force apparatus experi-

ments [88] shows an oscillatory behavior for separations up to several diameters of

fluid particles [89] and with the periodicity approximately equal to one fluid molecu-

lar diameter. Oscillatory f results from the packing effects, which also give rise to

highly structured density profile �(z). All structural deformations and/or transitions,

occurring in confined systems (capillary condensation, layering), are reflected in the

behavior of the solvation force. Hence, the surface force apparatus measurements

provide experimental information about the structure and transitions in the confined

systems.

Let us start the description of amphiphilic systems in slits with simple general

considerations. Recall the analogy between particles on the molecular length scale

and the oil- or water-rich domains on the nanometer length scale. Based on this anal-

ogy, one can expect an oscillatory solvation force in microemulsions and lamellar

phases, resulting from packing effects of domains. Period of the solvation force

should be comparable to the period of the structure ). Note, however, that the space

between particles in simple fluids is empty. In the amphiphilic systems the oil- and

water-rich domains are separated by the surfactant monolayers. The monolayers fluc-

tuate and the undulations lead to the formation of a thick interface between the “core

parts” of the water- and the oil-rich domains. The width of the interface is determined

by the standard deviation from the average of the position of the monolayer. In con-

trast to simple fluids, the regions between the cores of the oil- and the water-rich do-

mains are thus not empty. Compression or decompression leads to a decreased or

increased distance between the core parts of domains respectively. This in turn corre-

sponds to suppression or enhancement of the undulations of the monolayers. Let us

fix our attention on lamellar phases of period ) between parallel hydrophilic walls.

The equilibrium width L is equal to LN = N) + )/2, where N is integer. By analogy with

simple fluids, we may expect that when the equilibrium distance between confining

walls LN is changed to L + l with |l| > )/2, then a new lamellar layer is introduced if l > 0

or one layer is removed if l < 0. At these transitions the solvation force changes dis-

continuously, due to the abrupt change between the stretched and shrunk structures.

Let us assume that the period of the confined lamellar phase is the same in the whole

slit. When the equilibrium wall separation LN is changed to LN – )/2, then N - N – 1

and ) - ) + 4), with 4) = )/(2N – 1). 4)/) describes the deformation of the struc-

ture, if ) and 4) are independent of the distance from the confining walls. At the same

time, 4)/) describes the enhancement of undulations of the monolayers. There are
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two interfaces per one period of the lamellar phase apart from the oil- and the wa-

ter-rich domains. If we assume that the width of the interface is W 6 )/4 and the defor-

mation is uniform, so that the increase of the width is 4W = 4)/4, we obtain the

enhancement of undulations 4W/W 7 4)/). For large N the enhancement (or suppres-

sion) of undulations is small and the confined self-assembling system on the length

scale of ) may indeed behave as a simple fluid on the molecular length scale. How-

ever, for N 6 5, 4)/) > 10%, and the undulations must be strongly enhanced, if one pe-

riod of the lamellar phase is removed under compression and the structure of the

stretched system is the same in the whole slit. On the other hand, the external wall sup-

presses fluctuations of the monolayers in the near-surface region. One may expect, in

agreement with experiments [90], that the suppression of undulations extends to dis-

tances ~ 2) – 4) from the wall. For N 6 5 the distance from one or the other wall is < 3 )
and the undulations should be suppressed rather than enhanced in the whole slit. Re-

sults obtained in the semiinfinite geometry show that hydrophilic walls support the

formation of lamellar structures with the period equal or lower than in the bulk phases

in the near-surface region. Thus, one can expect that the central region of the slit

should be deformed. The structure of the central region of the slit should depend on

the thermodynamic state of the system, especially on the distance from phase transi-

tions. Consider two interesting examples – neighborhood of the lamellar-micro-

emulsion or the lamellar-oil/water-rich phase transitions. The excess thermodynamic

potential in the case of the deformation of the lamellar phase can be approximated by

0ex 8 L4�� + 2�w, where 4�� is the increase of the thermodynamic potential density,

due to the deformation of the structure and �w is the wall-fluid surface tension. Intro-

ducing a slab of the uniform phase of width l into the center of the slit and letting the

lamellar phase near the surfaces to assume the most favorable period, leads to the ex-

cess thermodynamic potential 0ex 8 L4�u + 2�w + 2�u�, where 4�u is the difference

between the thermodynamic potential density in the uniform and the stable lamellar

phases and �u� is the surface tension between these phases. The thermodynamic po-

tential densities of the two phases are only slightly different close to phase coexis-

tence. If also at the coexistence the surface tension between the two phases is low,

such that 4�� > 4�u�/L + �u�/L, it should be favorable to form a slab of the uniform

phase in the center of the slit, instead of forming the lamellar phase with strong en-

hancement of undulations. Increasing or decreasing the width of the uniform slab

leads to no stress and the period of the near-surface lamellar films can be adjusted

with no constrains. The compression should thus lead to a decreased width, l – 4l, of

the uniform layer, with the surface lamellar films unaffected. A rough estimate for the

solvation force is ~ 4�u. Close to phase coexistence, the difference between the bulk

thermodynamical potential densities 4�u - 0 and the solvation force should be very

weak if a uniform layer stabilizes in the center of the slit.

Consider the neighborhood of the lamellar-microemulsion phase coexistence.

The mechanism of stabilizing the microemulsion would be to allow for large fluctua-

tions of the monolayers, such that their average positions are no longer fixed in the

central layer of width 8 n) + )/2, n 7 1. In microemulsion the surfactant volume frac-
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tion is lower than in the lamellar phase and the average distance between the

monolayers is larger. By forming the slab of microemulsion in the center, the system

can adjust to the width of the slit without deforming the near-surface lamellar films.

In the case of the lamellar - oil/water-rich phase coexistence, the simplest way of cre-

ating a uniform film in the center of the slit would be to remove surfactant-

oil-surfactant (for N even) or surfactant-water-surfactant (for N odd) layer from the

center of the slit. Then, the two water- or oil- rich layers merge into one, twice as

thick, in the center of the slit.

To summarize, for large slits we expect that on the nanometer length scale the

confined amphiphilic systems should behave in a way similar to simple fluids on the

molecular length scale. For narrow slits, however, substantial difference between the

self-assembling systems and the simple fluids should be expected. Unlike particles,

the domains can change shape and volume, can merge or be split and the deformed

structures should be stabilized in the central region of the slit. The considerations

based on general grounds should be verified by explicit calculations. We present the

results obtained in the three major approaches below.

3.2.1. Confined Stack of Membranes. Mechanical properties (i.e. solvation

force for example) of confined lamellar and induced lamellar phases can be conve-

niently described within the membrane approach. A slab of a lamellar phase should

respond elastically to compression or decompression with respect to its equilibrium

width LN. The compressibility modulus of such a slab is given by (5) in the simplest

approximation, in which the only fluctuations of the membranes are their undula-

tions. In fact, droplets or passages between the membranes are rare far from the melt-

ing point of the lamellar phase and (5) should be a good approximation there. The

closer to the melting of the lamellar phase, the more passages are formed and the

poorer should be the approximation (5), in which passages are not taken into account.

The behavior corresponding to a chain of identical joined springs, each spring repre-

senting one lamellar layer, was confirmed experimentally [22,91,92]. While some

measurements [93–95] confirmed the form (5), another [22] show that B(P), where P

= )/2, lies between two lines corresponding to two significantly different values of

bending rigidity �. This suggests that in this second case deformations of the perfect

lamellar order other than undulations, probably passages, are relevant and change the

dependence B(P). The agreement between the membrane description and experi-

ments was observed only for large systems, L > 4). For L < 4) substantial deviations

from the elastic behavior were observed in agreement with our expectations obtained

on general grounds.

3.2.2. Confined Microemulsions and Lamellar Phases in the Landau-

Ginzburg Model. Thermodynamic properties, such as analogs of capillary conden-

sations, are not easily described within the membrane approach. It is much easier to

study phase transitions in confined self-assembling systems within the LG or CHS

models. The LG model (6) with the surface term (10) corresponding to confining

walls was applied for studying confined microemulsions in [40] and confined

lamellar phases in [25,96,97]. In [40] gs = 0 and n = 1 were assumed, whereas in
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[25] n = 2. Piecewise parabolic f and piecewise constant g allow for analytical results

and such forms of these functions were assumed in [40,25]. It was found that the ef-

fect of confinement on weakly and strongly structured microemulsions is qualita-

tively different in this model. In weakly structured microemulsions, with the oil- and

water-rich domains of size ) correlated over a short distance �, 2��/) < 3, the capil-

lary condensation of a lamellar phase takes place only for narrow slits. In contrast, for

2��/) > 3, lamellar phase stabilizes in slits of arbitrary width. In lamellar [25] and

induced lamellar [40] phases expansion of the slit leads to insertions of new layers,

accompanied by an abrupt change of the solvation force from the attractive to the re-

pulsive one. In a stretched system, the surface tension of oil-water interfaces becomes

negative, signaling the tendency of the system for increasing the surface area, which

takes place when a new layer is introduced into the slit [25] and the surface tension

changes its sign.

Predictions of the LG model (6), (10) are qualitatively correct. However, it is not

clear from the results of [40,25] whether the response of the confined system to com-

pression or decompression is elastic and how it depends on elastic properties of a sin-

gle membrane and on the period of the lamellar phase. Hence, it is not clear whether

the predictions of the LG models for self-assembling confined systems are consistent

with the results of the membrane approach and with experiments.
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Figure 4. a: The excess thermodynamic potential 0ex (in units of b/a2), defined in (14), as a function of

the wall separation measured in units of the lattice constant a. b: The solvation force f (in units

of b/a3) as a function of the wall separation. The thermodynamic variables 1, � and the material

constant c/b of the one-dimensional system correspond to stability of the swollen lamellar

phase with ) = 13a (1 = 0.84, � = 0.774, c/b = 1); the distance from the first-order transition be-

tween the water-rich and the lamellar phases is |4�| = 0.003. Walls are covered by water.

Dashed lines are to guide the eye.



The structure of lamellar phases, confined between hydrophilic walls, was stud-

ied in MC simulations for the LG model (6) for very narrow slits (L 6 2)) in [96,97].

For such L experiments show deviations from the elastic behavior predicted by the

membrane-theories. It turns out that for L 6 2) the structure significantly differs from

shrunk or stretched lamellar phases if L does not match the equilibrium size of the

slab. Apart from one (for small L) or two (for larger L) pairs of surfactant monolayers

located near the walls, a thick layer resembling microemulsion is formed in the mid-

dle of the slit. For nearly neutral walls, simulations suggest the formation of lamellar

structures perpendicular to the walls.

3.2.3. Confined Lamellar and Uniform Phases in the CHS Model. Confined

lamellar and water-rich phases, in the case of hydrophilic walls, are studied in [65] in

one- and three-dimensional versions of the CHS model. In the three-dimensional case

the surfactant-surfactant interactions between nearest-neighbors, supporting forma-

tions of monolayers, are included. As in [58] two parallel (antiparallel) amphiphiles

contribute –g(+g) to the energy of the system if the distance between them is perpen-

dicular to their orientation. In such extended CHS model, the lamellar phases (includ-

ing the swollen ones) occupy a large part of the phase space. Because the walls break

the symmetry, as in the semiinfinite case, we assume that all quantities depend only

on the distance from the left wall, z. In the one-dimensional case, the mean-field reads

�i(z) = U ij j

jz

L

z z z( ' ) ( ' )
'

�..
�

�
1

(see section 2.3). In the three-dimensional case a term

describing the in-plane energy contribution should be added to �i(z).
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Figure 5. One-dimensional system. The subsequent minima of 0ex are fitted by quadratic curves B(L –

LN)2, where LN is the equilibrium separation for N adsorbed layers and B is the coefficient in the

fitting curve to the N-th minimum. a: B (in units of b/a4) as a function of the inverse number of

adsorbed layers 1/N. The thermodynamic variables 1, � and the material constant c/b are the

same as in Fig. 4. b: B (in units of b/a4) obtained for the induced lamellar phases as a function of

the inverse number of adsorbed layers 1/N. The parameters 1, � and c/b correspond to stability

of the water-rich phase (1 = 0.84, � = 0.778, c/b = 1). The distance from the first-order transi-

tion to the swollen lamellar phase is |4�| = 0.001. Dashed lines are linear fits.



For studying structural deformations in confined system, the crucial quantity is

the excess thermodynamical potential 0ex defined in (14). 0ex is the effective inter-

action energy per unit area between the walls plus a term independent of L and related

to the total wall-fluid interfacial tension. Then –�0ex/�L is the solvation force, needed

to held the walls at the separation L. The one- and three-dimensional models give

qualitatively the same results for lamellar phases of similar periods, thus we present

here mainly the results of the simpler, one-dimensional case.
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Figure 6. Compressibility modulus B (in units of kbT/a3) of the swollen lamellar phases as a function of

the average distance between the surfactant monolayers, P = )/2 (in units of a) in the

three-dimensional system. The behavior expected from the phenomenological prediction of

Helfrich ((5)) is shown for two values of �: 0.5kbT (solid line), 0.6kbT (dashed line).

Figure 7. One-dimensional system in the case of intermediate wall separations, 18 < L < 54. Length is

measured in units of the lattice constant a. The thermodynamic variables 1, � and the material

constant c/b are the same as in Fig. 4, period of the bulk lamellar phase is ) = 13. Walls are cov-

ered by water. a: the density distribution of water between the walls for the separation L = 29.

b: the density distribution of oil between the walls for the separation L = 39.



Swollen lamellar phases. For c/b = 1 the swollen lamellar phases are stable,

close to coexistence with the uniform water-/oil-rich phases (water-oil symmetry was

assumed). Surfactant concentration at the coexistence is low, �surf ~ 0.12. The behav-

ior of 0ex and f, as well as the structure of the confined system, agree with the pre-

dictions based on general grounds discussed above. The excess thermodynamic potential

per unit area0ex and the solvation force f obtained for)= 13 in [65] are shown in Fig. 4.

For large separations between surfaces (N > 4), the second derivative of 0ex with

respect to L calculated at L = LN, B =0 ex

' ' (LN), is well approximated by a straight line B

= (B/2))N–1 as a function of 1/N (see Fig. 5a). Hence, the response of the system to

compression or decompression is elastic, and analogous to the behavior of a series of

identical joined springs.

The modulus of compressibility B as a function of P = )/2 for a three-dimen-

sional system is shown in Fig. 6 (open circles) together with the phenomenological

curves (5) for two values of �, between which the results are located [65]. The dis-

crepancy between the results of the CHS and the membrane models results probably

from deformations, such as passages or droplets, neglected in the latter case. For the

surface separations, for which the number of adsorbed layers is N 6 3, the stretch

strain of layers releases by formation of the uniform water-rich film for N = 1,3 (see

Fig. 7a), and oil-rich film for N = 2 (see Fig. 7b) in the middle of the slit. This agrees

with the predictions described above. The formation of the uniform films inside the

slit is reflected in the saturated-like behavior of 0ex and considerably low f for the

corresponding surface separations. The elastic behavior of the confined lamellar
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Figure 8. One-dimensional system in the case of small wall separations, L < 19. Length is measured in

units of the lattice constant a. The thermodynamic variables 1, � and the material constant c/b

are the same as in Fig. 4, and ) = 13. Walls are covered by water. a: the density distribution of

water for the separation L = 5. The solid line is the average water density in the bulk lamellar

phase for the same values of 1, �, c/b. b: the density distribution of the surfactant for the separa-

tion L = 18. Note the surfactant-rich surface films. c: the density distribution of oil for L = 18.

The solid line is the oil density in the bulk lamellar phase for the same conditions. d: the density

of water for the wall separation L = 19. Dashed lines are to guide the eye.



phase can still be observed, but only for small deviations from the equilibrium separa-

tions. The structure for N < 1 is shown in Fig. 8.

Water-rich phase. 0ex and f calculated as functions of the wall separation are

shown in Fig. 9. In general, the structure in the slit is determined by the ther-

modynamical potential density �b of the bulk metastable phases. If L matches the pe-

riod of the metastable phases with low �b, the lamellar phase is formed between the

surfaces, see Fig. 10a. Otherwise, the water rich phase is formed inside the slit as

shown in Fig. 10b, and the solvation force vanishes. The induced lamellar phases also

show the elastic response to the confinement, see Fig. 5b, but only for small devia-

tions from equilibrium separations.

Shrunk lamellar phase. Close to the coexistence between the microemulsion

and the shrunk lamellar phases, only one metastable phase occurs apart from the

other, stable one. This gives qualitatively a different energy 0ex profile, as shown in

Fig. 11. The minima of 0ex(L) correspond to N lamellar layers adsorbed in the slit.

The adsorbed phases are deformed in the middle of the slit for separations up to L = 22

= 5) + )/2, see Fig. 12a, while for larger separations the strain releases to some extent

by creating lamellar films with suppressed amplitude, see Fig. 12b. 0ex(L) does not

approach zero with increasing L. This resembles the behavior of lamellar phases, in-

duced by confinement from microemulsions with short periods ()/2�� < 3) obtained

in the GS model [40] and discussed above.

Self-assembling systems in restricted geometry 23

Figure 9. a: The excess thermodynamic potential 0ex (in units of b/a2) as a function of the wall separation

measured in unit of the lattice constant a. b: The solvation force f (in units of b/a3) as a function

of the wall separation. The thermodynamic variables 1, � and the material constant c/b of the

one-dimensional system correspond to the stability of the water-rich phase, close to the coexis-

tence with the swollen lamellar phase (1 = 0.84, � = 0.778, c/b = 1, |4�| = 0.001). Walls are cov-

ered by water.



Comparison with experiments. The compressibility modulus was measured in

[22] for system comprised of sodium bis(2-ethylhexyl) sulfosuccinate and brine at T

= 259C. For different volume fractions of the surfactant, B ranges from 0.003 to 0.027

when expressed in units of kbT/a3 (the thickness of the membrane is a = 1.9 nm for the

system studied in [22]). The results obtained in the CHS model are of the same order

of magnitude as in experiments. For the range of parameters chosen in [65], periods of

the lamellar phase (in the length unit of a) in the model and in the experimental sys-

tems of [22] are comparable. The values of B (in units of kbT/a3) and � (in units of kbT)

in the model and experiment agree very well and the agreement is better in the
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Figure 10. a: Density distribution of water between hydrophilic walls for the separation L = 38 (the third

minimum in Fig. 9a). b: Density distribution of water between hydrophilic walls for the sep-

aration L = 40. For such density distributions the solvation force vanishes. The parameters are

the same as in Fig. 9 (1 = 0.84, � = 0.778, c/b = 1, |4�| = 0.001).

Figure 11. Excess thermodynamic potential 0ex (in units of b) as a function of the wall separation in the

one-dimensional case. The thermodynamic variables 1, � and the material constant c/b corre-

spond to stability of the shrunk lamellar phase with the period of density oscillations equal to

4 (1 = 2.8, � = 4.32, c/b = 4). Solid line corresponds to vanishing 0ex.



three-dimensional model (compare Fig. 6 here and Fig. 8 in [22]). Hence, once the

model parameters are chosen, such that the dimensionless period of the bulk lamellar

phase is the same as in the experiment, the elastic properties of the confined model

and experimental systems agree quantitatively very well. We obtain the same orders

of magnitude as in experiments [98] also for lamellar phases induced by confinement.

In the case of the shrunk lamellar phases, the discreteness of the model may play an

important role. We should note, however, that in experiments of [22] an oscillating

solvation force was observed in some cases for all the measured distances, up to L =

1000a.

4. SUMMARY

The CHS model is particularly suitable for studying self-assembling systems in

restricted geometries. First, the phase transitions between various phases can be con-

tinuous or discontinuous in the CHS model already in MF. This allows for relatively

easy calculations, close to the coexistence between phases in which self-assembled

monolayers are ordered or disordered in space. In particular, such coexisting phases

can be studied in the semiinfinite geometry. The model thus can serve for testing of

quite general predictions concerning wetting phenomena in such complex systems.

Second, swollen lamellar phases incommensurate with the lattice are stable in this

model. Periods of such phases are much larger than the lattice constant and change

continuously when the thermodynamical conditions are varied. Hence, the lattice

structure should only weakly affect the physical properties of the results. At the same

time the lattice structure significantly simplifies the calculations. Last but not least,

the results can be directly compared with experiments. The interaction parameters

can be chosen so that the structure of the bulk phase (in units of the thickness of the
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Figure 12. Density profiles of water between water-covered walls for parameters 1 = 2.8, � = 4.32,

c/b = 4, a: L = 22 and b: L = 34.



monolayer) is the same as in experimental systems. Then there are no free parameters

for fitting to the experimental data. The calculated and measured quantities, such as

the elastic moduli, if expressed in terms of kbT and the thickness of the monolayer

(identified with the lattice constant), are in very good quantitative agreement. This

finding is encouraging for future applications of the CHS model.
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